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Abstract The extended semantic realism (ESR) model embodies the mathematical formal-
ism of standard (Hilbert space) quantum mechanics in a noncontextual framework, rein-
terpreting quantum probabilities as conditional instead of absolute. We provide here an
improved version of this model and show that it predicts that, whenever idealized meas-
urements are performed, a modified Bell-Clauser-Horne-Shimony-Holt (BCHSH) inequality
holds if one takes into account all individual systems that are prepared, standard quantum
predictions hold if one considers only the individual systems that are detected, and a stan-
dard BCHSH inequality holds at a microscopic (purely theoretical) level. These results admit
an intuitive explanation in terms of an unconventional kind of unfair sampling and constitute
a first example of the unified perspective that can be attained by adopting the ESR model.

Keywords Quantum mechanics · Quantum probability · Bell inequalities · Local realism ·
Unfair sampling

1 Introduction

It is well known that the objectification problem is crucial in the quantum theory of mea-
surement. According to Busch, Lahti and Mittelstaedt [1] this problem arises whenever an
interpretation of the mathematical apparatus of standard (Hilbert space) quantum mechanics
(QM) is adopted which is realistic (in the sense that it assumes that QM deals with individ-
ual objects and their properties) and complete (in the sense that it assumes that all elements
of physical reality are described by QM).

If one wants to trace the origins of the objectification problem it is expedient to introduce
the notion of objectivity. To be precise, we say that in a physical theory T which is realistic
in the sense explained above a property E of a physical system Ω is objective for a given
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state S of Ω if, for every individual example x of Ω (physical object) in the state S, E is
either possessed or not possessed by x, independently of any measurement that may be per-
formed on x;1 furthermore, we say that T is an objective theory if all physical properties are
objective in it for every state S of Ω , nonobjective otherwise. Then, there exist some cele-
brated “no-hidden-variables” theorems (in particular, the Bell-Kochen-Specker, or Bell-KS,
and the Bell theorems [2–4]) which according to most scholars show that QM necessarily is
a contextual, hence nonobjective, theory. In particular, if a pure state S is given, a physical
property E is nonobjective in S if and only if one has probability different from 1 or 0 of
finding the property E when performing a measurement on a physical object x in the state S.
If one then maintains that QM is a complete theory, one cannot explain how physical prop-
erties that are not objective may become objective (and conversely) when a measurement is
performed, which is just the objectification problem.

According to the authors quoted above, no satisfactory solution of the objectification
problem has been found in the framework of the realistic and complete interpretation of
QM or its unsharp extension [1, 5]. Therefore, many proposals have been made to avoid
it, some of which consider QM as an incomplete theory. In this case one could contrive a
hidden-variables theory containing parameters whose unknown values determine whether a
property is possessed or not by a given physical object x in the state S, hence determine
the outcome of any measurement on x. The objectification problem thus disappears. But
the “no-hidden-variables” theorems oblige one to introduce hidden variables whose values
depend on the measurement context and not only on the features of the physical object that
is considered (e.g., Bohm’s theory), hence objectivity of physical properties is lost anyway.
Moreover, Bell’s theorem implies that contextuality holds also at a distance (nonlocality)
[4, 6], which is strongly counterintuitive because it implies that performing a measurement
on a part of a physical system may make objective a property of another far away part of
the physical system which was previously nonobjective. In addition, from a semantic point
of view nonobjectivity implies that a statement E(x) attributing a physical property E to a
physical object x in a state S has a truth value if and only if E is objective in the state S:
this amounts to adopt a verificationist theory of truth for the observational language of QM,
which is highly problematical [7].

Because of the consequences of nonobjectivity mentioned above one may wonder
whether a new interpretation of the mathematical apparatus of QM can be provided which
recovers objectivity of physical properties. But, of course, this possibility seems to be ex-
cluded by the “no-hidden-variables” theorems. Hence every attempt at vindicating objectiv-
ity in QM must begin with a preliminary criticism of these theorems. Bearing in mind this
remark, one of the authors, together with some coworkers, has proven in several papers (see,
e.g., [8–11]) that the standard reasonings aiming to show that QM is a contextual theory
accept implicitly an epistemological assumption (called metatheoretical classical principle,
or, briefly, MCP) which does not fit in well with the operational philosophy of QM. If MCP
is replaced by a weaker metatheoretical generalized principle (MGP), which is closer to
the aforesaid philosophy, the proof of the conflict of QM with objectivity cannot be given.2

1The terms “possessed” and “not possessed” in the definition above are rather loose. We show in the following
that our definition of objectivity acquires a more precise meaning whenever its implications are considered
on the semantics of the observational language of QM or on the properties of hidden-variables theories for
QM.
2For the sake of completeness let us discuss this issue in more details. To this end, let us resume the essentials
of our epistemological position. We consider the theoretical laws of QM as mathematical schemes from
which empirical laws can be deduced. Consistently with the operational and antimetaphysical attitude of



Int J Theor Phys (2010) 49: 3101–3117 3103

Basing on this result and adopting MGP in place of MCP, a new interpretation of the mathe-
matical formalism of QM has been supplied in the papers quoted above according to which
all physical properties are objective for every state of the physical system that is consid-
ered. The new interpretation adopts a purely semantic version of objectivity (therefore it has
been called Semantic Realism, or SR, interpretation) and entails that QM is semantically
incomplete. Unfortunately, it is scarcely intuitive and may seem founded on a problematic
epistemological analysis to many pragmatically oriented physicists. Therefore the same au-
thors have proposed an SR model [12, 13] and an extended SR (briefly, ESR) model [13–16]
which introduce a more intuitive picture of the physical world which modifies and extends
the original SR interpretation. We intend to show in this paper that the ESR model provides
a general scheme for an objective theory embodying the mathematical apparatus of QM.
Hence we present in Sect. 2 a revised and improved version of this model, stressing that
it implies a reinterpretation of quantum probabilities which has long-ranging implications.
Then we show in Sect. 3 that objectivity of (macroscopic) physical properties holds in the
ESR model if one adds a further reasonable axiom on probabilities, and argue that the predic-
tions of the ESR model differ from those following from the standard interpretation of QM,
which makes it possible, in principle, to check which interpretation is correct. In particular,
we consider in Sect. 4 the physical situation introduced in the literature to obtain the stan-
dard Bell-Clauser-Horne-Shimony-Holt (BCHSH) inequality [17] from the point of view of
the ESR model, and prove that, whenever idealized measurements are performed and all pre-
pared physical objects are taken into account, a modified BCHSH inequality holds. Then we
discuss in Sect. 5 how the quantum predictions, which refer to the set of all physical objects
that are detected, can be inserted in the modified BCHSH inequality, and which kind of ex-
perimental tests can be performed. Furthermore we show in Sect. 6 that a standard BCHSH
inequality holds at a microscopic (purely theoretical) level, hence we conclude that the stan-
dard BCHSH inequality, the modified BCHSH inequality and the quantum predictions hold
together in the ESR model because they refer to different parts of the picture provided by the
model. This is in our opinion a relevant result, because it shows how a long lasting conflict
among different inequalities can be settled,3 hence we also provide in Sect. 6 an intuitive
explanation of this settlement in terms of an unconventional kind of unfair sampling.

QM, we do not attribute truth values to the sentences stating the former laws. We instead assume that every
sentence stating an empirical law has a truth value, which is true in all those situations in which the law can
be checked (epistemically accessible physical situations), while it may be true as well as false in physical
situations in which it cannot be checked because QM itself prohibits any test. This assumption constitutes
the general principle that we call MGP. If one then considers the “no-hidden-variables” theorems mentioned
above, one sees that they are proved ab absurdo. To be precise, one assumes boundary, or initial, conditions
which attribute noncompatible properties to the physical system that is considered. This implies hypothesizing
physical situations that are not epistemically accessible. Nevertheless empirical quantum laws are applied in
these situations [12, 13], which implies assuming that empirical laws are valid in QM independently of the
epistemic accessibility of the physical situation that is considered. This assumption, which is stronger than
MGP, constitutes the general principle that we call MCP. If MCP is rejected and replaced by MGP, the “no-
hidden-variables” theorems cannot be proved.
3We stress that the ESR model is deeply different from the approaches that try to vindicate local realism by
questioning the interpretation of the experimental results obtained till now because of the low efficiencies of
the detectors. In particular, most of these approaches consider standard Bell’s and quantum inequalities as
competing theoretical results which cannot be decided on the basis of the available experimental data, while
the ESR model reconciles these inequalities. The interested reader can find a more detailed discussion of this
topic in [18].
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2 The ESR Model

As we have anticipated in Sect. 1, the ESR model has been proposed by one of the authors
few years ago [12–16] and we aim to present here an improved version of it, together with a
more complete treatment of idealized measurements.

The basic notions of the ESR model can be divided in three groups.

(i) Standard primitive and derived notions: physical system, preparing device, state, physi-
cal object. In particular, a state of a physical system Ω is defined as a class of physically
equivalent preparing devices [19, 20]. A physical object is defined as an individual ex-
ample x of Ω , obtained by activating a preparing device π , and we say that “x is
(prepared) in the state S” if π ∈ S.

(ii) New observational entities: generalized observables. Every physical system Ω is asso-
ciated with a set O of generalized observables. Every generalized observable A0 (here
meant as a class of physically equivalent measuring apparatuses, without any reference
to a mathematical representation) is obtained in the ESR model by considering an ob-
servable A of QM with set of possible values Ξ on the real line � and adding a further
outcome a0 (no-registration outcome of A0) that does not belong to Ξ , so that the set
of possible values of A0 is Ξ0 = {a0} ∪ Ξ .4

(iii) New theoretical entities: microscopic properties. Every physical system Ω is charac-
terized by a set E of microscopic properties. For every physical object x, the set E is
partitioned in two classes, the class of properties that are possessed by x and the class
of properties that are not possessed by x, independently of any measurement procedure.
We stress that different physical objects in the same state S may possess different mi-
croscopic properties (but assigning the state S of x imposes some limits on the subset
of microscopic properties that can be possessed by x, see footnote 6).

Let B(�) be the σ -algebra of all Borel subsets of �. The introduction of generalized ob-
servables allows us to define the set F0 of all macroscopic properties of Ω ,

F0 = {(A0,X) | A0 ∈ O, X ∈ B(�)}, (1)

and the set F ⊂ F0 of all macroscopic properties associated with observables of QM,

F = {(A0,X) | A0 ∈ O, X ∈ B(�), a0 /∈ X}. (2)

For every A0 ∈ O, different Borel sets containing the same subset of Ξ0 define physically
equivalent properties. For the sake of simplicity we convene that, whenever we mention
macroscopic properties in the following, we actually understand such classes of physically
equivalent macroscopic properties. Furthermore, we agree to write simply observable in
place of generalized observable whenever no misunderstanding is possible.

We establish a link between microscopic properties of E and macroscopic properties of
F by means of the following assumption.

Axiom 1 A bijective mapping ϕ : E −→ F ⊂ F0 exists.

4If Ξ = � the observable A can be substituted, without loss of generality, by the observable f (A), with f a
bijective mapping which maps � onto a proper subset, say �+, of �.
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Let us describe now an idealized measurement of a macroscopic property F = (A0,X)

on a physical object x in the state S. We assume that such a measurement consists of a regis-
tration, performed by means of a dichotomic registering device (which may be constructed
by using one of the apparatuses associated with A0), whose outcomes we denote by yes and
no. The measurement yields outcome yes (no) if the value of A0 belongs (does not belong)
to X, and we say in this case that x displays (does not display) F .5 It is then important to
note that x displays (does not display) F if it does not display (displays) Fc = (A0,� \ X).
Now, we assume that the set of all microscopic properties possessed by x induces a proba-
bility (which is either 0 or 1 if the model is deterministic) that the apparatus react (detection
probability). Whenever the apparatus reacts, x displays F if it possesses the microscopic
property f = ϕ−1((A0,X \ {a0})) (where (A0,X \ {a0}) coincides with F iff F ∈ F ), oth-
erwise it displays Fc . Whenever the apparatus does not react, x displays F if F ∈ F0 \ F ,
while it displays Fc if F ∈ F .

The above description implies that the microscopic properties determine the probability
of an outcome (or the outcome itself if the model is deterministic), which therefore does not
depend on features of the measuring apparatus (flaws, termal noise, etc.) nor is influenced by
the environment. In this sense idealized measurements are “perfectly efficient”, and must be
considered as a limit of concrete measurements in which the specific features of apparatuses
and environment must instead be taken into account.

We must still place properly quantum probability in our picture. To this end, let us sup-
pose that the device π ∈ S is activated repeatedly, hence a finite set S of physical objects
in the state S is prepared. Then, S can be partitioned into subsets S1,S2, . . . ,Sn such that
each subset collects all objects possessing the same microscopic properties. We briefly say
that the objects in Si (i = 1,2, . . . , n) are in some microscopic state Si . This suggests us
to associate every state S with a family of microscopic states S1, S2, . . . and characterize
Si (i = 1,2, . . .) by the set of all microscopic properties that are possessed by any physical
object in Si (hence also microscopic states play the role of theoretical entities in the ESR
model). Let us now consider a physical object x in Si , and let us suppose that a measurement
of a macroscopic property F = (A0,X) ∈ F is performed on it. It follows from our descrip-
tion of the measurement process that, whenever x is detected, x displays F if and only if the
microscopic property f = ϕ−1(F ) is one of the microscopic properties characterizing Si .
We are thus led to introduce the following probabilities.

p
i,d
S (F ): the probability that x be detected when F is measured on it.

pi
S(F ): the conditional probability that x display F when it is detected (which is 0 or 1
because x either possesses ϕ−1(F ) or does not possess it).

p
i,t
S (F ): the joint probability that x be detected and display F .

Hence, we get

p
i,t
S (F ) = p

i,d
S (F )pi

S(F ). (3)

Equation (3) is purely theoretical, since one cannot know whether a physical object is in
the microstate Si . Therefore, let us consider a physical object in the state S and introduce a
further conditional probability, as follows.

5The introduction of microscopic properties implies that the term “possessed” and “not possessed” may be
misleading if referred to macroscopic properties in our framework. Hence we use them only with reference
to microscopic properties and introduce a new terminology to describe the relations between macroscopic
properties and physical objects.
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p(Si |S): the conditional probability that x, which is in the macroscopic state S, be in the
microstate Si .

The joint probability that x be in the state Si , be detected and display F is thus given
by p(Si |S)p

i,t
S (F ). Hence the overall probability pt

S(F ) that x be detected and display F is
given by

pt
S(F ) =

∑

i

p(Si |S)p
i,t
S (F ). (4)

Moreover, the probability pd
S(F ) that x be detected when F is measured is given by

pd
S(F ) =

∑

i

p(Si |S)p
i,d
S (F ). (5)

Let us define now

pS(F ) =
∑

i p(Si |S)p
i,t
S (F )

∑
i p(Si |S)p

i,d
S (F )

. (6)

Then, we get

pt
S(F ) = pd

S(F )pS(F ). (7)

Equation (7) is the fundamental equation of the ESR model. Let us therefore discuss the two
factors that appear in it.

Let us begin with the detection probability pd
S(F ). We have seen that, since we are deal-

ing here with idealized measurements, the occurrence of the outcome a0 is attributed only to
the set of microscopic properties possessed by x, which determines the probability p

i,d
S (F ).

Hence, p
i,d
S (F ) neither depends on features of the measuring apparatus nor is influenced

by the environment. Furthermore, the conditional probability p(Si |S) depends only on S.
Therefore, (5) implies that pd

S(F ) depends only on the microscopic properties of the physical
objects in S.

Let us come to pS(F ). By using (3) and (6) we get 0 ≤ pS(F ) ≤ 1. Moreover, the inter-
pretations of pt

S(F ) and pd
S(F ) in (7) show that pS(F ) can be interpreted as the conditional

probability that a physical object x display F when it is detected. This interpretation of the
term pS(F ) in (7) provides a basis for the introduction of the main assumption of the ESR
model.

Axiom 2 If S is a pure state, the probability pS(F ) can be evaluated by using the same rules
that yield the probability of F in the state S according to QM.

Axiom 2 implies a new interpretation of the probabilities provided by standard quantum
rules, which are now regarded as conditional rather than absolute.6 The old and the new in-
terpretation of quantum probabilities coincide if pd

S(F ) = 1 for every state S and property F .
If there are states and properties such that pd

S(F ) < 1, instead, the difference between the
two interpretations is conceptually relevant. To better grasp this difference, let us regard

6Note that, if the state S is assigned and the property F is such that pS(F ) = 1, every physical object that

is detected necessarily possesses the microscopic property f = ϕ−1(F ). This specifies the limits mentioned
in (iii).
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probabilities as large number limits of frequencies in ensembles of physical objects,7 and
let us consider ensembles of physical objects in the state S. Then, pS(F ) is the limit of the
ratio between the number of objects in a given ensemble that are detected and display the
property F , and the number of objects that are detected. The same quantity would be inter-
preted in QM as the limit of the ratio between the number of objects in a given ensemble that
display the property F and the number of objects in the ensemble. Hence, the ESR model
introduces a non-orthodox interpretation of quantum probabilities. But it must be stressed
that Axiom 2 implies that, as far as the probability pS(F ) is concerned, the physical system
Ω can be associated with a Hilbert space H and its pure states and macroscopic proper-
ties in F can be represented by means of (unit) vectors on H and (orthogonal) projection
operators on H , respectively.

Let us complete our discussion by considering a macroscopic property G = (A0, Y ) ∈
F0 \ F . In this case we can introduce the macroscopic property F = (A0, Y \ {a0}) ∈ F and
get, because of our description of the measurement procedure,

p
i,t
S (G) = (1 − p

i,d
S (F )) + p

i,t
S (F ) (8)

where p
i,t
S (G) is the probability that x display the property G whenever it is in the micro-

scopic state Si . By using (4)–(7) we then obtain

pt
S(G) = (1 − pd

S(F )) + pt
S(F ) = 1 − pd

S(F )(1 − pS(F )) (9)

where pt
S(G) is the overall probability that x display G and pS(F ) can be evaluated by

using standard quantum rules.
We conclude this section by observing that every microscopic property f can be asso-

ciated with a dichotomic hidden variable, which takes value 1 (0) if f is possessed (not
possessed) by the physical object x that is considered. Equivalently, a microscopic state can
be seen as the value of a hidden variable λ specifying all microscopic properties of x. Hence,
the ESR model provides a general scheme for a hidden-variables theory which exhibits some
similarities with existing hidden-variables theories or models, but is different from all pre-
vious proposals because of its reinterpretation of quantum probabilities. Besides, it must be
stressed that no hidden variable associated with the measuring apparatuses occurs in this
theory because the ESR model is noncontextual.

3 Objectivity and Physical Predictions in the ESR Model

As we have anticipated in Sect. 1, we intend to show in this section that the ESR model
provides, by introducing microscopic properties, an intuitive (set-theoretical) picture of the
physical world in which macroscopic properties can be considered objective. This picture
allows one to make physical predictions even if some theoretical entities in the ESR model
have no mathematical representation at this stage.

First of all, let us adopt the following definition of objectivity (which particularizes the
definition of objectivity introduced in Sect. 1) when referring to hidden-variables theories.

7We adopt this naïve interpretation of physical probabilities here for the sake of simplicity. A more sophis-
ticated treatment would associate quantum measurements with random variables, require that distribution
functions approach experimental frequencies, etc. Our conclusions, however, would not be modified by the
adoption of this more general and rigorous machinery.
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Objectivity. A hidden-variables theory is objective iff for every macroscopic physical
property F and state S the outcome of a measurement of F on a physical object x in the
state S is determined only by hidden variables associated with x.

The above notion of objectivity is strictly linked with the notion of contextuality, which is
broadly used in the literature. To be precise, the latter notion occurs in at least two different
senses [16].

(i) Contextuality1. A hidden-variables theory is contextual if the outcome of a measurement
of a (macroscopic) property F on a physical object x may depend on hidden variables
associated with the set of (compatible) measurements that are simultaneously performed
on x, not only on hidden variables associated with x (standard notion, see, e.g., [3, 6]).

(ii) Contextuality2. A hidden-variables theory is contextual if the outcome of the measure-
ment of a (macroscopic) property F on a physical object x may depend on hidden vari-
ables associated with the specific registration that is used to perform the measurement,
not only on hidden variables associated with x (hidden measurement approach, see, e.g.,
[21], and probabilistic opposition, see, e.g., [22]).

The two kinds of contextuality may coexist and both imply nonobjectivity. Conversely,
objectivity implies noncontextuality1 and noncontextuality2. Hence we can use the word
objectivity as a synonym of noncontextuality, without specifying whether contextuality1 or
contextuality2 is understood.

Let us consider now (3). Because of the definition of pi
S(F ), and because p

i,d
S (F ) only

depends on microscopic properties, this equation shows that the probability p
i,t
S (F ) is com-

pletely determined by the value Si of the hidden variable (equivalently, by the set of all mi-
croscopic properties possessed by a physical object x in Si ), hence it is independent of the
measurement context, that is, it is noncontextual. But, of course, noncontextuality of prob-
abilities (which holds also in QM, see, e.g., [6]) does not imply objectivity of macroscopic
physical properties. Nevertheless, whenever the ESR model is deterministic, the microscopic
properties actually determine the outcome of a measurement of F (Sect. 2), hence objectivity
of macroscopic properties holds in this case. If the ESR model, instead, is nondeterministic,
we cannot deduce objectivity but can introduce a new assumption which implies it.

Axiom 3 For every microscopic state Si , the probability p
i,d
S (F ) admits an epistemic (or ig-

norance) interpretation (see, e.g., [19]) in terms of further unknown features of the physical
objects in the state Si .

Indeed, Axiom 3 implies that a parameter μ exists which determines, together with Si ,
whether the physical object x is detected whenever the property F is measured on it, i.e., μ

and Si determine whether the outcome a0 occurs or not (note that μ can be interpreted as
denoting a subset of further microscopic properties possessed by x, selected in a new set of
microscopic properties that do not correspond to macroscopic properties via ϕ). Since Si de-
termines all macroscopic properties of x whenever x is detected, all macroscopic properties
are determined by the pair (μ,Si), hence the ESR model is objective in the sense specified
above.

Because of Axiom 3 and our remark at the end of Sect. 2 the ESR model can be con-
sidered as a scheme for a noncontextual hidden-variables theory with reinterpretation of
quantum probabilities. But, of course, it is not yet a general theory. Indeed, one should still
introduce mathematical representations of generalized observables and macroscopic prop-
erties, rules for evaluating the detection probabilities, and evolution laws (first steps in this
direction are proposed in [23, 24]). From the point of view of the ESR model one needs a
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completion of this kind, in particular, to deal with measurements in terms of interactions be-
tween macroscopic apparatuses and microscopic physical objects, which could explain the
failure of the attempts at providing an exhaustive theory of quantum measurements in QM.8

Leaving apart the above general problems and limiting ourselves to the ESR model as
presented here, let us consider the statistical predictions that can already be obtained. Let a
set of idealized measurements be performed on an ensemble of physical objects in a state
S (we recall that the ESR model deals with idealized measurements only, hence the lack of
efficiency of actual measuring apparatuses must be taken into account separately). It follows
from the general features of the ESR model (in particular, Axiom 2) that its predictions can
be partitioned in two classes.

(a) Predictions concerning the subensemble of all physical objects that are detected by the
measurements. They are obtained by using the quantum formalism (see Axiom 2), hence
formally coincide with the predictions of QM, but QM would interpret them as referring
to the whole ensemble.

(b) Predictions concerning the whole ensemble. Here the detection probability pd
S(F ) plays

an essential role, but one may think at first sight that these predictions can be only quali-
tative because of the lack of a general theory for pd

S(F ). On the contrary, by considering
a special case we show in Sect. 5 that the assumptions of the ESR model (in particular,
objectivity) imply quantitative conditions on the possible values of pd

S(F ) which entail
that pd

S(F ) < 1 for some S ∈ S and F ∈ F .

It follows from (a) and (b) that the predictions of the ESR model are essentially different
from those of QM. Moreover, one can try to get empirical information about pd

S(F ) from
experimental data and compare it with the conditions imposed by the ESR model (see in
particular Sect. 5). Hence, at least in principle, the ESR model is falsifiable.9

4 The Modified BCHSH Inequality

The ESR model presented in Sect. 2 introduces several theoretical entities (microscopic
properties and states) that are not operationally defined. But these entities do not appear
in (7), which can be postulated a priori if one wants to reinterpret quantum probabilities
without introducing underlying models. Basing only on (7) we intend to discuss in this
section some consequences of objectivity in the ESR model by reconsidering the physical
situations that led to the standard BCHSH inequality.

8Note that if the ESR model is nondeterministic and one avoids introducing Axiom 3, contextuality cannot
be excluded. In this case one can assume that the outcome of a measurement of a macroscopic property is
determined by a pair (ν, Si ), where ν denotes a hidden variable (or a set of hidden variables) associated with
the measurement context (contextual ESR model). The contextual ESR model provides a scheme for a general
hidden-variables theory which embodies the quantum formalism and reinterprets quantum probabilities but
preserves contextuality. It is then interesting to observe that this theory may be local or nonlocal, depending
on the assumptions on the parameter ν. In the former case it converges with the proposals of the probabilistic
opposition [22], while in the latter case it converges with the perspective of the hidden measurement approach
[21].
9In practice it may be hard to check the ESR model in this way. Indeed, if the intrinsic lack of efficiency

of any measuring apparatus is schematized by multiplying pd
S
(F ) by a factor k, with 0 ≤ k ≤ 1, it may be

difficult to distinguish empirically k from pd
S
(F ).
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First of all, let us observe that objectivity as defined in Sect. 3 implies local realism in
the standard sense in the literature [4, 17, 25],10 i.e., the join of the assumptions of realism,

R: the values of all observables of a physical system in a given state are predetermined
for any measurement context,
and locality,

LOC: if measurements are made at places remote from one another on parts of a physical
system which no longer interact, the specific features of one of the measurements do not
influence the results obtained with the others.

It seems at first sight that the standard BCHSH inequality must then hold in the ESR
model. But such a conclusion is false. Indeed the proof of this inequality does not rest only
on R and LOC, but also on the implicit condition that in an ideal measurement all physical
objects on which the measurement is performed are detected. This condition is not fulfilled
by the idealized measurements introduced in the ESR model, where the set of possible out-
comes of a generalized observable contains a0. Hence, we can prove that modified instead
of standard BCHSH inequalities hold in the ESR model whenever all physical objects that
are prepared are taken into account.

To begin with, let us resume the physical situation introduced in the literature to obtain a
standard BCHSH inequality.

Let Ω be a compound physical system made up of two far away subsystems Ω1 and Ω2,
and let A(a) and B(b) be dichotomic observables of Ω1 and Ω2, respectively, depending
on the parameters a and b and taking either value −1 or +1. Then, the standard treatment
assumes R and LOC and defines a correlation function

P (a,b) =
∫

Λ

dλρ(λ)A(λ,a)B(λ,b), (10)

where λ is a deterministic hidden variable whose value ranges over a domain Λ when mea-
surements on different examples of Ω in a given state S are considered, ρ(λ) is a probability
distribution on Λ, A(λ,a) and B(λ,b) are values of A(a) and B(b), respectively. By using
(10) one gets the standard BCHSH inequality

|P (a,b) − P (a,b′)| + |P (a′,b) + P (a′,b′)| ≤ 2. (11)

As we have seen at the beginning of this section, however, the proof of (11) also rests on the
condition, which is usually left implicit, that in a (ideal) measurement all physical objects
on which the measurement is performed be detected. This condition is not fulfilled by the
idealized measurements of the ESR model, where the no-registration outcome occurs in
every generalized observable that is considered. Therefore the dichotomic observables A(a),
B(b), A(a′) and B(b′) must be substituted by the trichotomic observables A0(a), B0(b),
A0(a′) and B0(b′), respectively, in each of which a no-registration outcome is added to
the outcomes +1 and −1. Let us agree to consider trichotomic observables such that all

10The use of the phrase “local realism” in the context of Bell’s Theorem has recently been disputed [26].
We add that the meaning of the word “realism” in this phrase does not match the meaning of the word
“realistic” used by Busch et al. [1] and mentioned in Sect. 1. Nevertheless we will not break with the standard
language here because definition R is widely used in the literature and has a precise meaning when translated
in terms of hidden variables, even thought it does not fit in well with traditional notions of realism adopted
by philosophers.
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no-registration outcomes coincide with 0.11 Then we recall that the range of values of the
hidden variable λ is the subset of all microscopic states associated with the macroscopic state
S (see Sect. 2). Hence the correlation function in (10) must be substituted by a generalized
correlation function

P (A0(a),B0(b)) =
∑

i

p(Si |S)A0(S
i,a)B0(S

i,b), (12)

where A0(S
i,a) and B0(S

i,b) denote the values of A0(a) and B0(b), respectively, when the
hidden variable takes value Si (which implies that we must consider an ESR model which is
deterministic in the sense explained in Sect. 2). We can now follow the standard procedures
leading to (11). Since |A0(S

i,a)| ≤ 1 we get

|P (A0(a),B0(b)) − P (A0(a),B0(b′))| ≤
∑

i

p(Si |S)|B0(S
i,b) − B0(S

i,b′)| (13)

and, similarly,

|P (A0(a′),B0(b)) + P (A0(a′),B0(b′))| ≤
∑

i

p(Si |S)|B0(S
i,b) + B0(S

i,b′)|. (14)

Now, we have

|B0(S
i,b) − B0(S

i,b′)| + |B0(S
i,b) + B0(S

i,b′)| ≤ 2 (15)

and ∑

i

p(Si |S) = 1, (16)

hence we obtain the modified BCHSH inequality

|P (A0(a),B0(b)) − P (A0(a),B0(b′))| + |P (A0(a′),B0(b)) + P (A0(a′),B0(b′))| ≤ 2,

(17)
which replaces (11) in the ESR model.

5 Modified BCHSH Inequality and Quantum Predictions

The generalized correlation function in (12), hence the modified BCHSH inequality, clearly
refer (via the conditional probability p(Si |S) that a physical object in a state S be in the
microstate Si ) to the set of all objects that are prepared in the state S, just as the correlation
function in (10). In this section we want to insert in (12) the predictions that can be attained
by using the rules of QM, which refer to the subset of all detected physical objects only.
This can be done in general by using the fundamental equation of the ESR model, but the
resulting formulas are rather complicate and their interpretation is not immediate. To better
highlight the peculiarities of the ESR approach we therefore consider a special case in which
some simplificative conditions hold, as follows.

11Note that, if A0 is a generalized observable obtained from an observable A of QM by introducing the no-
registration outcome a0 	= 0, one can easily construct a new observable such that its no-registration outcome
is 0. Indeed, one can introduce a Borel function χ on � which is bijective on Ξ0 and such that χ(a0) = 0,
consider the observable χ(A) of QM and add the outcome 0 to its set of possible values.
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First of all, let us agree to consider discrete observables and pure states only. Hence
the set Ξ0 of all possible values of a generalized observable A0 will be given by Ξ0 =
{a0} ∪ {a1, a2, . . .}, where Ξ = {a1, a2, . . .} is the set of all possible values of the observable
A of QM from which A0 is obtained. Measuring A0 is thus equivalent to measuring the
properties F0 = (A0, {a0}), F1 = (A0, {a1}), F2 = (A0, {a2}), . . . simultaneously, hence, for
every Fn such that n ∈ N, (7) holds with Fn in place of F , and we briefly write an instead
of Fn in it. Then, let us agree to take into account only (discrete) observables that satisfy the
following simplificative condition:

(i) the detection probability depends on the observable but not on its specific value.

Because of condition (i), we write pd
S(A0) instead of pd

S(an) and get from (7) and (9)

pt
S(an) = pd

S(A0)pS(an) (18)

and

pt
S(a0) = 1 − pd

S(A0), (19)

respectively. Equations (18) and (19) can be used to evaluate the expectation value 〈A0〉S of
A0 in the state S,

〈A0〉S = a0(1 − pd
S(A0)) + pd

S(A0)〈A〉S, (20)

where

〈A〉S =
∑

n

anpS(an) (21)

is the conditional expectation value of A0, which coincides with the standard quantum ex-
pectation value of the observable A of QM from which A0 is obtained, but has a different
physical interpretation, because it represents the mean value of A0 whenever only detected
physical objects are taken into account.

Let us assume further that for each observable considered in the following an idealized
measurement exists which satisfies the following conditions:

(ii) the measurement may change the state of the physical object x on which it is performed
but it does not destroy x, even if x is not detected;

(iii) if the physical object x is detected and a given outcome is obtained, the state of x after
the measurement can be predicted by using the Hilbert space representation of pure
states and the projection postulate of QM;

(iv) the measurement is minimally perturbing, in the sense that the state of a physical object
x is not changed by the measurement whenever x is not detected.

Then, let us consider a compound physical system Ω made up by two far apart subsys-
tems Ω1 and Ω2, and let A0,B0 be observables of the component subsystems Ω1 and Ω2,
respectively. In this case objectivity of properties implies that the change of the state of Ω

induced by a measurement of A0 on Ω1 must not affect the detection probability associated
with a simultaneous measurement of B0 on Ω2 (whose possible outcomes will be denoted by
b0, b1, b2, . . .). By using this remark and conditions (i)–(iv) we can calculate the probabili-
ties pt

S(an, bp), pt
S(an, b0), pt

S(a0, bp), pt
S(a0, b0) (with n,p ∈ N) of obtaining the pairs of

outcomes (an, bp), (an, b0), (a0, bp), (a0, b0), respectively, in simultaneous measurements
of A0 and B0 on a physical object x in the state S. We get

pt
S(an, bp) = pd

S(A0)p
d
S(B0)pS(an, bp), (22)
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pt
S(an, b0) = pd

S(A0)(1 − pd
S(B0))pS(an), (23)

pt
S(a0, bp) = (1 − pd

S(A0))p
d
S(B0)pS(bp), (24)

pt
S(a0, b0) = (1 − pd

S(A0))(1 − pd
S(B0)), (25)

where pS(an, bp) is the quantum probability of obtaining the pair (an, bp) when measuring
A0 and B0. Note that (22)–(25) contain only two probabilities that cannot be evaluated by
using the rules of QM, that is, pd

S(A0) and pd
S(B0).

Let us define now a generalized correlation function P (A0,B0), as follows

P (A0,B0) =
∑

n,p

anbppt
S(an, bp) +

∑

n

anb0p
t
S(an, b0)

+
∑

p

a0bppt
S(a0, bp) + a0b0p

t
S(a0, b0). (26)

By using (22)–(25) and introducing the further assumption:

(v) a0 = 0 = b0

(hence, for every n,p ∈ N, an 	= 0 	= bp) we get that the generalized correlation function,
for the special class of observables that we are considering, is given by

P (A0,B0) = pd
S(A0)p

d
S(B0)〈AB〉S, (27)

where

〈AB〉S =
∑

n,p

anbppS(an, bp). (28)

Because of the interpretation of pS(an, bp), the conditional expectation value 〈AB〉S for-
mally coincides with the standard quantum expectation value in the state S of the product
of the (compatible) observables A and B from which A0 and B0, respectively, are obtained.
But its physical interpretation is different, for it represents the mean value of the product of
A0 and B0 whenever only detected physical objects are taken into account. As the standard
correlation function in the literature, P (A0,B0) may provide an index of the correlation
among the outcomes of A0 and B0 in the state S.

Let us come now to the modified BCHSH inequality, and let us recall that each tri-
chotomic observable that occurs in it has a no-registration outcome which is equal to 0, so
that it satisfies condition (v). Let us further suppose that it also satisfies conditions (i)–(iv).
Then we can use (27) and get from (17) [27]

pd
S(A0(a))|pd

S(B0(b))〈A(a)B(b)〉S − pd
S(B0(b′))〈A(a)B(b′)〉S |

+ pd
S(A0(a′))|pd

S(B0(b))〈A(a′)B(b)〉S + pd
S(B0(b′))〈A(a′)B(b′)〉S | ≤ 2. (29)

Equation (29) contains explicitly four detection probabilities and four conditional expecta-
tion values. The latter can be calculated by using the rules of QM because of Axiom 2 in
Sect. 2, and formally coincide with expectation values of QM. If one puts them into (29)
the inequality can be interpreted as a condition that must be fulfilled by the detection prob-
abilities in the ESR model. It is then important to stress that this condition implies that the
detection probability pd

S(F ) in (7) cannot be equal to 1 for every state S and property F ,
hence the physical predictions of the ESR model are necessarily different from those of QM
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(see (b) at the end of Sect. 3). Of course, we have as yet no theory allowing us to calculate
precise values for pd

S(F ). Nevertheless, should one be able to perform measurements that
are close to ideality, the detection probabilities could be determined experimentally and then
inserted into (29). Two possibilities occur.

(a) There exist states and observables such that the conditional expectation values violate
(29). In this case one must reject the ESR model (hence R and LOC), or the set of
additional assumptions introduced to attain (27), or both.

(b) For every choice of states and observables the conditional expectation values fit in with
(29). In this case the ESR model is supported by the experimental data.

The above alternatives show explicitly that the ESR model is, in principle, falsifiable, as
we have stated at the end of Sect. 3.12

6 A Conciliatory Result

We have observed at the beginning of Sect. 3 that the ESR model aims to provide a set-
theoretical picture of the physical world in which macroscopic properties can be considered
objective. The basic elements of this picture are microscopic properties (primitive notion)
and microscopic states (derived notion). We intend to broaden such picture in the present
section by introducing theoretical probabilities of microscopic properties and microscopic
observables. This broadening will be used to show that the standard BCHSH inequality, the
modified BCHSH inequality and the standard quantum predictions do not conflict in the
framework of the ESR model because they refer to different parts of the picture provided by
the model.

To begin with, let us recall from Sect. 2 that, whenever an ensemble Σ of physical objects
is prepared in a state S, the microscopic properties possessed by each object depend on the
microscopic state Si of the object but not on the measurement context. It follows that, for
every f ∈ E , one can introduce a theoretical probability pS(f ) that a physical object x in
the state S possess f . Furthermore, let us consider the macroscopic property F = ϕ(f )

corresponding to f . The probability pS(f ) = pS(ϕ
−1(F )) generally does not coincide with

the probability pt
S(F ) in (7) because there may be physical objects that possess f and yet

are not detected, which implies that they do not display F (hence, pt
S(F ) ≤ pS(f )). As far

as pS(f ) and pS(F ) are concerned, instead, two possibilities occur.

(i) The subensemble Σd of all physical objects that are detected is a fair sample of Σ , that
is, for every f ∈ E , the percentage of physical objects possessing f in Σd is identical
to the percentage of physical objects possessing f in Σ . Since all detected objects
possessing f turn out to display F = ϕ(f ) when a measurement is done, pS(f ) and
pS(F ) coincide.

(ii) Σd is not a fair sample of Σ . In this case there exist some f ∈ E such that pS(f ) does
not coincide with pS(F ).

Let us now introduce microscopic observables and their expectation values in the ESR
model, as follows.

12The implications of (29) discussed above can be better understood by studying particular examples. In

the case of two spin- 1
2 quantum particles in the singlet spin state we have proven [27] that the ESR model

predicts, under suitable assumptions, the upper bound 1
4√2

≈ 0.841 for the probability that a spin- 1
2 particle

be detected when the spin along an arbitrary direction is measured on it.
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Let A0 be a discrete generalized observable and let us use the symbols introduced
in Sect. 4. Hence A0 is characterized by the macroscopic properties F0 = (A0, {a0}),
F1 = (A0, {a1}), F2 = (A0, {a2}), . . . The property F0 has no microscopic counterpart, while
F1, F2, . . . correspond to the microscopic properties f1 = ϕ−1(F1), f2 = ϕ−1(F2), . . . , re-
spectively. Then, we define the microscopic observable A corresponding to A0 by means of
the family {fn}n∈N. The possible values of A are the outcomes a1, a2, . . . and its expectation
value 〈A〉S in the state S is given by

〈A〉S =
∑

n

anpS(fn), (30)

where pS(fn) is the theoretical probability of the microscopic property fn.
We are thus ready to discuss what is going on at a microscopic level. Indeed, by using

the above definition we can consider the (dichotomic) microscopic observables A(a), A(a′),
B(b) and B(b′), each of which has possible values −1 and +1, corresponding to the (tri-
chotomic) macroscopic observables A0(a), A0(a′), B0(b) and B0(b′) introduced in Sect. 4,
respectively. Since all microscopic properties are either possessed or not possessed by a
given physical object, the usual procedures leading to (11) can be applied. Hence we get the
standard BCHSH inequality, with P (a,b), P (a,b′), P (a′,b) and P (a′,b′) reinterpreted in
terms of microscopic observables.

Bearing in mind our results in Sect. 5, we can draw the conclusion that, under suitable
assumptions on the observables that are taken into account, different inequalities hold for
different parts of the picture provided by the ESR model.

(a) The standard BCHSH inequality holds at a microscopic level (which is purely theoreti-
cal and cannot be experimentally checked).

(b) The modified BCHSH inequality holds at a macroscopic level whenever all physical
objects that are prepared are considered (which can be experimentally checked, at least
in principle, see Sect. 5).

(c) The quantum predictions deduced by using QM rules hold at a macroscopic level when-
ever only the physical objects that are detected are considered (which can be experimen-
tally checked). In this case there are physical situations in which quantum inequalities
hold which do not coincide with the standard BCHSH inequalities.

The above conclusion is “conciliatory” in the sense that it settles the conflict between
the standard BCHSH inequality and quantum predictions, as anticipated at the beginning of
this section. It is then interesting to observe that the ESR model allows us to interpret the
violation of the standard BCHSH inequality, which occurs whenever quantum expectation
values are substituted in this inequality, in terms of a (unconventional) kind of unfair sam-
pling. Indeed, let us suppose that A0 is measured on each physical object in Σ . Then, several
physical objects display the property F0 (hence the expectation value 〈A0〉S of A0 is given
by (20)). Therefore the objects for which the outcomes a1, a2, . . . are obtained belong to the
subset Σd ⊆ Σ . Furthermore, the probabilities pS(F1) = pS(a1), pS(F2) = pS(a2), . . . must
be interpreted as the large number limits of the frequencies of a1, a2, . . . , respectively, in Σd .
Let us consider the conditional expectation value 〈A〉S = ∑

n anpS(Fn) introduced in Sect. 4
and compare it with 〈A〉S . It is apparent that 〈A〉S and 〈A〉S must coincide if case (i) occurs,
while they generally do not coincide if case (ii) occurs. Analogous remarks hold if we con-
sider the conditional expectation value 〈AB〉S defined by (28). It follows that, if we substi-
tute P (a,b), P (a,b′), P (a′,b) and P (a′,b′) in (11) with the conditional expectation values
〈A(a)B(b)〉S , 〈A(a)B(b′)〉S , 〈A(a′)B(b)〉S and 〈A(a′)B(b′)〉S , respectively, the inequality
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must be fulfilled in case (i), while it can be violated in case (ii). Since the conditional ex-
pectation values coincide with standard quantum expectation values (see Sect. 4), there are
physical situations in which (11) is violated, hence we conclude that case (ii) occurs and Σd

is not a fair sample of Σ .13

We have thus attained our goal. To close up, we would like to add a final remark. It is
well known that the tests of Bell’s inequalities actually check derived inequalities, obtained
by adding additional assumptions to local realism. Therefore many scholars uphold that the
experimental data that disprove these inequalities could actually show that the additional
assumptions are false, not that local realism is untenable (see, e.g., [28–35]). In addition,
some authors point out that the proof of Bell’s inequality requires a hidden Bell’s postulate
(HBP) besides local realism, i.e., the assumption that “an experiment involving several in-
compatible measurements can be written on a single probability space, independently of the
measurement context” [36]. HBP implies a fair sampling assumption on the measuring ap-
paratuses, which has been recently questioned by reconsidering some available experimental
data [37]; moreover, a wave model has been devised in which unfair sampling occurs [36].
These results provide further support to the Växjö interpretation of QM, which rejects HBP
and is contextual but local and realistic [22]. It is then interesting to observe that the fore-
going criticism to the fair sampling assumption rests on investigations into real measuring
processes, and unfair sampling is ascribed to features of the measuring apparatuses (e.g.,
existence of thresholds) rather than to intrinsic properties of the physical objects that are
considered, as in the ESR model (where therefore no hidden variable associated with mea-
suring apparatuses occurs, see Sect. 2). This makes the Växjö interpretation of QM basically
different from the ESR model. Nevertheless the Växjö analysis of the measuring processes
could be recovered broadening the ESR model by taking into account real measurements
with their intrinsic lack of efficiency. One could thus obtain a contextual ESR model (see
footnote 8) in which contextuality occurs in connection with real measurements only and
locality is preserved. In this sense the Växjö interpretation and the ESR model can be seen
as complementary rather than conflicting.
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